短信预约提醒成功
回归检验
在利用回归模型进行预测时,需要对回归系数、回归方程进行检验,以判定预测模型的合理性和适用性。检验方法有方差分析、相关检验、t检验等。对于一元线性回归,这些检验效果是相同的。在一般情况下,选择其中一项检验即可。
1.方差分析
通过推导,可以得出:
∑(yi-Y)2=∑(yi-yi’)2+∑(yi’-Y)2
其中:∑(yi-Y)2=TSS,称为偏差平方和,反映了n个y值的分散程度,又称总变差。
∑(yi’-Y)2=RSS,称为回归平方和,反映了x对y线性影响的大小,又称可解释变差。
∑(yi-yi’)2=ESS,称为残差平方和,根据回归模型的假设条件,ESS是由残差项e造成的,它反映了除x对y的线性影响之外的一切使y变化的因素,其中包括x对y的非线性影响及观察误差。因为它无法用x来解释,故又称未解释变差。
所以,TSS=RSS+ESS 其实际意义是总变差等于可解释变差与未解释变差之和。
在进行检验时,通常先进行方差分析,一方面可以检验在计算上有无错误;另外一方面,也可以提供其它检验所需要的基本数据。
定义可决系数R2,
R2=RSS/TSS
R2的大小表明了y的变化中可以用x来解释的百分比,因此,R2是评价两个变量之间线性关系强弱的一个指标。可决系数R2,表明y的变化有多少和x有关。用以度量回归模型对样本的拟和优度。可以导出,
3.t检验
即回归系数的显著性检验,以判定预测模型变量X和Y之间线性假设是否合理。因为要使用参数t值,故称为t检验。回归常数a是否为0的意义不大,通常只检验参数b。