短信预约提醒成功
2.Bleich悬索桥颤振分析
1940年秋天,美国华盛顿州Tacoma悬索桥风毁失事,人们很自然地将这一风振现象比拟为裹冰状态输电缆的驰振或平板机翼的颤振。Bleich试图用Theodorsen平板机翼颤振理论来解释这一事故,但是他发现居此计算得到的颤振临界风速远高于Tacoma悬索桥破坏当天的实际风速。显然机翼颤振系数不能直接用于气动现象更加复杂的钝体截面中,例如Tacoma悬索桥的桁架加劲梁断面。为此,BIeich又尝试用考虑桥面断面两边涡旋影响的附加升力项来修正Theodorsen气动力表达式,并通过逐次逼近方法计算出了较为合理的悬索桥颤振临界风速,从而建立起了悬索桥古典耦合颤振的分析方法[7]。
3. Kloppel/Thiele诺模图
1961年,Kltw和Thiele将BIeich悬索桥古典耦合颤振理论的逐次逼近过程编制成计算程序,引入无量纲参数,分别绘制出不同阻尼比条件下颤振方程实部和虚部为零的两条曲线的诺模图,利用诺模图可以直接求出颤振临界风速[8].该方法一直沿用到现在,例如ECCS中的附表[9].
4.Van der Put计算公式
1976年,van der put在Kloppel和Thiele诺模图的基础上,偏于安全地忽略了阻尼的影响,认为折算风速U/ωB和扭弯频率比ε=ωα/ωh之间具有近似线性关系,从而导出了平板古典耦合颤振临界风速Ucr的实用计算公式。
三、分离流颤振机理
当气流绕过振动着的非流线性截面时,在迎风面的棱角处气流将发生分离,同时产生涡旋脱落,也可能发生再附,其流态十分复杂,简单地采用Theodorsen表达式已经不能描述气流作用在非流线体上的非定常空气力[11].
1.非定常气动力实验测量
Theodorsen机翼气动力表达式是建立在有势流沿着翼面流动基础之上的。一旦气流有分离时,这一假定立即失效,而流动分离所引起的失速颤振现象最早是在螺旋浆和航空发动机叶片上观察到的。由于建立在分离流基础之上的非定常气动力表达式无法找到,因此从30年代开始,人们将注意力转向用实验方法来确定非定常气动力,主要通过两种方法来实施。一是直接测量法,即对确定形式振动的物体,采用拾振器、应变计或其他仪器直接测量气动力分量;二是间接测量法,即间接地从振动的物体上计算气动力的大小,这两种方法同样适用于机翼和桥梁断面。
1958年,Forshing采用直接测量法测得了各种棱柱体的非定常气动力[12],而Ukeguchi等人将 Halfman测量机翼非定常气动力的方法,首次用到了桥梁断面非定常气动力的测定中,他们采用机械方法在两个自由度方向用不同频率的简谐波激发刚体桥梁节段模型振动,在模型的支承处测量气动力[13].随后这种强迫振动技术在日本得到了很大的发展,被广泛地用来测定钝体断面的气动力和非线性性能[14-16].近年来,用于高速电子压力扫描阀技术的发展,使得多点同步测量得以实现,这项技术的应用开辟了非定常气动力测量的又一新途径「17」。
与直接测量法相反,间接气动力测量方法一般只需要比较简单的实验设备,但是对实验的要求更高,这一方法在桥梁气动力学中的应用是由Scanlan首创的[l1][18],很快在世界范围得到普及[19][20]。
?2008年全国注册岩土工程师考试交流回馈
?2009年注册土木工程师(岩土)考试辅导招生简章
?09年岩土工程师老师辅导,现在报名可赠07、08年课程!
?老师辅导每天24小时不限时间随时反复学习……