短信预约提醒成功
地震工程地质:
1.基本概念
震级:是衡量地震本身大小的尺度,由地震所释放出来的能量大小所决定。
烈度:地面震动强烈程度,受地震释放的能量大小、震源深度、震中距、震域介质条件的影响。在工
程应用中常有地震基本烈度和设防烈度(设计烈度)之分。
地震基本烈度:一定时间和一定地区范围内一般场地条件下可能遭遇的最大烈度。一个地区的平均烈
度。
设防烈度(设计烈度):是抗震设计所采用的烈度。是根据建筑物的重要性、经济性等的需要,对基本
烈度的调整。
卓越周期:地震波在地层中传播时,经过各种不同性质的界面时,由于多次反射、折射,将出现不同周期的地震波,而土体对于不同的地震波有选择放大的作用,某种岩土体总是对某种周期的波选择放大得突出、明显,这种被选择放大的波的周期即称为该岩土体的卓越周期。
2.简述振动破坏效应的分析方法(静力分析法、动力分析法的原理)
地震对建筑物振动破坏作用的分析方法有静力法和动力法两种。
静力分析法:
(1)假设建筑物是刚体,即建筑物的各部分作为一个整体,具有相同的加速度。
(2)建筑物的加速度和地面加速度是相同的。
(3)地震作用在建筑物上的惯性力是固定不变的,是由地面振动的最大加速度决定的。
动力分析法:(目前应用最广泛的方法是简化的反应谱法)
(1)假设建筑物结构是单质点系的弹性体。
(2)作用于建筑物基底的运动为简谐运动
所测得的结构相同的动力反应不仅取决于地面运动的最大加速度,还取决于结构本身的动力特征,最主要的是结构的自振周期和阻尼比。
阻尼比越大,建筑物固有周期与地面振动周期差别越大,越难引起共振。
3.场地工程地质条件对震害的影响
(1)岩土类型及性质: 软土>硬土,土体>基岩。松散沉积物厚度越大,震害越大。土层结构对
震害的影响:软弱土层埋藏愈浅、厚度愈大,震害愈大。
(2)地质构造:离发震断裂越近,震害越大,上盘尤重于下盘。
(3)地形地貌:突出、孤立地形震害较低洼、沟谷平坦地区震害大。
(4)水文地质条件:地下水埋深越小,震害越大。
4.简述地震区建筑场地选择原则及抗震措施
场地选择原则:
(1)避开活动性断裂带和大断裂破碎带;
(2)尽可能避开强烈振动效应和地面效应的地段作场地或地基;
(3)避开不稳定的斜坡或可能会产生斜坡效应的地段;
(4)避免孤立突出的地形位置作建筑场地;
(5)尽可能避开地下水埋深过浅的地段作建筑场地;
(6)岩溶地区地下不深处有大溶洞,地震时可能会塌陷,不宜作建筑场地。
抗震措施(持力层和基础方案的选择):
(1)基础要砌置于坚硬、密实的地基上,避免松软地基;
(2)基础砌置深度要大些,以防止地震时建筑物的倾倒;
(3)同一建筑物不要并用几种不同型式的基础;
(4)同一建筑物的基础,不要跨越在性质显著不同或厚度变化很大的地基土上;
(5)建筑物的基础要以刚性强的联结梁连成一个整体。
5.简述地震发生的条件
(1)介质条件:多发生在坚硬岩石中。
(2)结构条件:多产生在活断层的一些特定部位:端点、拐点、交汇点等。
(3)构造应力条件:多发生在现代构造运动强烈的部位,应力集中。
6.简述地震效应类型
地震效应可以分为振动破坏效应、地面破坏效应和斜坡破坏效应。
(1)振动破坏效应:地震发生时,地震波在岩土体中传播而引起强烈的地面运动,使建筑物的地基基础以及上部结构都发生振动,给它施加了一个附加荷载即地震力。当地震力达到某一限度时,建筑物即发生破坏。这种由于地震力作用直接引起建筑物的破坏,称为振动破坏效应。
(2)地面破坏效应:地面破坏效应可分为破裂效应和地基效应两种基本类型。前者指的是强震导致地面岩土体直接出现破裂和位移,从而引起附近的或跨越破裂带的建筑物变形或破坏。后者指的是地震使松软土体压密下沉、砂土液化、淤泥塑流变形等,而导致地基失效,使上部建筑物破坏。
(3)斜坡破坏效应:包括地震导致的滑坡、崩塌或泥石流等,主要发生在山区和丘陵地带。
7.我国地震地质的基本特征
(1)强震活动受活动构造的严格控制。
(2)大陆地震受控于现代构造应力场特征。
(3)强震活动经常发生在断裂带应力集中的特定地段上。
(4)绝大多数强震发生在一些稳定断块边缘的深大断裂带上,而稳定断块内部很少或基本没有强震分布。
(5)裂谷型断陷盆地控制了强震的发生。
8.简述地震小区划的概念及其原理和划分方法
地震小区划是对城市或工程场地范围内可能遭遇的地震强度及其特点的划分。它除了考虑潜在震源情况、传播路径的因素外,还根据场地地质活动构造与地貌条件给出场地地震影响场的分布。
地震小区划包括地震动小区划和地震地质灾害小区划。
(1)地震动小区划不仅要对城市所在范围内的场地类别和地震动时振动轻重程度作出详细划分,指出各小区场地对建筑物抗震的有利或不利程度,指明各小区具体的不利因素以及可能发生的地基失效类型,而且要对城市范围内各小区提出具有概率意义的设计地震动参数等,包括地面运动峰值加速度、峰值速度、地震动持时、场地卓越周期、加速度反应谱等一系列指标。
(2)地震地质灾害小区划应包括砂土液化、软土震陷、地震断层、地震滑坡等内容。
9.简述我国地震分布规律
我国地处环太平洋与地中海-喜马拉雅两大地震带之间,地震分布比较普遍。除中国台湾东部、西藏南部和吉林东部地震属板块边缘消减带地震活动外,其余广大地域均属板内地震活动。而且绝大多数强震都发生在稳定断块边缘的一些规模巨大的区域性深大断裂带上或断陷盆地之内。主要地震区与活动构造带关系密切。中国科学院地球物理研究所把我国分为23 个地震带。其中最主要的地震带有:中国台湾与东南沿海地震带;郯城-庐江地震带;南北阳地震带;华北地震带;西藏-滇南地震带;天山南北地震带。
10.砂土液化的概念
饱水砂土在地震、动力荷载或其它物理作用下,受到强烈振动而丧失抗剪强度,使砂粒处于悬浮状态,致使地基失效的作用或现象。
11.影响砂土液化的因素
(1)土的类型及性质
粒度:粉、细砂土最易液化。
密实度:松砂极易液化,密砂不易液化。
成因及年代:多为冲积成因的粉细砂土,如滨海平原、河口三角洲等。沉积年代较新:结构松散、
含水量丰富、地下水位浅。
(2)饱和砂土的埋藏分布条件:砂层上覆地震愈强,历时愈长,则愈引起砂土液化,而且波及范围愈广非液化土层愈厚,液化可能性愈小;地下水位埋深愈大,愈不易液化。
(3)地震活动的强度及历时:地震愈强,历时愈长,则愈引起砂土液化,而且波及范围愈广。
12.地震砂土液化的机理
机理:地震时饱水砂土中形成的超孔隙水压力使土的抗剪强度降低和丧失。
具体来说,砂土依靠颗粒间的摩擦力维持本身的稳定,这种摩擦力主要取决与颗粒间的法向压力,而饱和砂土由于孔隙水压力的存在,其抗剪强度小于干砂的抗剪强度(颗粒间摩擦力),地震过程中,砂土将趋于密实,并伴随排水的现象,而由于砂土变密实,其透水变差。从而产生了剩余孔隙水压力(超孔隙水压力),显然,此时的抗剪强度更低了,而且随着振动持续时间增长,剩余空隙水压力不断累积增大,从而使砂土的抗剪强度持续降低,直至完全丧失。
13.砂土振动液化的评价方法(即判别方法)
评价方法:①标准贯入试验判别;②静力触探试验判别;③剪切波速试验判别;④ 土的相对密实度判别。
14. 砂土振动液化对工程建筑的影响及防护措施(重点:防护措施)
影响:(1)地面下沉 (2)地表塌陷 (3)地基土承载力丧失 (4)地面流滑
防护措施:振冲法、排渗法、强夯法、爆炸振密法、板桩围封法、换土、增加盖重。
以上内容是2019年岩土工程师《基础知识》考点:地震工程地质,供大家参考学习!为帮助考生及时获取2019年岩土工程师考试报名时间,可以点击 免费预约短信提醒
查看更多岩土工程师复习资料可点击文章下方"点击免费下载>>>岩土工程师试题/考点精华",更多免费内容尽在其中...