短信预约提醒成功
lZlOl012 掌握现金流量图的绘制
一、现金流量的概念
在考察对象整个期间各时点t上实际发生的资金流出或资金流人称为现金流量
其中:流出系统的资金称为现金流出,用符号(CO)t表示
流人系统的资金称为现金流入,用符号(CI)t表示
现金流入与现金流出之差称为净现金流量,用符号(CI-CO)t表示。
二、现金流量图的绘制
现金流量的三要素: ①现金流量的大小(现金流量数额)
②方向(现金流入或现金流出)
③作用点(现金流量发生的时间点)
lZl01013 掌握等值的计算
不同时期、不同数额但其“价值等效”的资金称为等值,又叫等效值。
一、一次支付的终值和现值计算
一次支付又称整存整付,是指所分析系统的现金流量,论是流人或是流出,分别在各时点上只发生一次,如图所示。
n 计息的期数
P 现值 ( 即现在的资金价值或本金),资金发生在(或折算为) 某一特定时间序列起点时的价值
F 终值 (即n 期末的资金值或本利和),资金发生在(或折算为) 某一特定时间序列终点的价值
( 一 ) 终值计算 ( 已知 P 求 F)
一次支付n年末终值 ( 即本利和 )F 的计算公式为:
F=P(1+i)n
式中(1+i)n 称之为一次支付终值系数 , 用(F/P, i, n)表示,又可写成 : F=P(F/P, i, n)。
例 : 某人借款 10000 元 , 年复利率 i=10% , 试问 5 年末连本带利一次需偿还若干 ?
解 : 按上式计算得 :
F=P(1+i)n =10000×(1+10%)5=16105.1 元
( 二 ) 现值计算 ( 已知 F 求 P)
P=F(1+i)-n
式中(1+i)-n 称为一次支付现值系数 , 用符号(P/F, i, n)表示。式又可写成: F=P(F/P, i, n)。
也可叫折现系数或贴现系数。
例某人希望5年末有 10000 元资金,年复利率 i=10%,试问现在需一次存款多少 ?
解 : 由上式得 :
P=F(1+i)-n = 10000×(1+10%)-5=6209 元
从上可以看出:现值系数与终值系数是互为倒数
二、等额支付系列的终值、现值、资金回收和偿债基金计算
等额支付系列现金流量如图
A 年金,发生在 ( 或折算为 ) 某一特定时间序列各计息期末(不包括零期) 的等额资金序列的价值。
1. 终值计算 ( 已知 A, 求 F)
等额支付系列现金流量的终值为 :
[(1+i)n-1]/i年称为等额支付系列终值系数或年金终值系数 , 用符号(F/A,i,n)表示。
公式又可写成:F=A(F/A,i,n)。
例:若 10 年内,每年末存 1000 元,年利率 8%, 问 10 年末本利和为多少 ?
解 : 由公式得:
=1000×[(1+8%)10-1]/8%
=14487
2. 偿债基金计算 ( 已知 F, 求 A)
偿债基金计算式为:
i/ [(1+i)n-1]称为等额支付系列偿债基金系数,用符号(A /F,i,n)表示。
则公式又可写成:A=F(A /F,i,n)
例:欲在 5 年终了时获得 10000 元,若每年存款金额相等,年利率为10%, 则每年末需存款多少 ?
解 : 由公式 (1Z101013-16) 得 :
=10000×10%/ [(1+10%)5-1]
=1638 元
3. 现值计算 ( 已知 A, 求 P)
[(1+i)n-1]/i(1+i)n 称为等额支付系列现值系数或年金现值系数 , 用符号(P/A,i,n)表示。
公式又可写成: P=A(P/A,i,n)
例:如期望 5 年内每年未收回 1000 元,问在利率为 10% 时,开始需一次投资多少 ?
解 : 由公式得 :
=1000×[(1+10%)5-1]/10%(1+10%)5
=3790. 8 元
4. 资金回收计算 ( 已知 P, 求 A)
资金回收计算式为 :
i(1+i)n / [(1+i)n-1]称为等额支付系列资金回收系数,用符号(A/P,i,n)表示。
则公式又可写成:A=P(A/P,i,n)
例:若投资10000元,每年收回率为 8%, 在10年内收回全部本利,则每年应收回多少 ?
解 : 由公式得 :
=10000×8%×(1+8%)10/ [(1+8%)10-1]
=1490. 3 元
2009年一级建造师课程报名>>> 2009年二级建造师课程报名>>>