短信预约提醒成功
1. 投入产出表的基本平衡关系
在投入产出表中有一些基本的总量平衡关系。具体归纳如下:
总投入=总产出
中间投入+增加值=总投入
中间使用+最终使用=总产出
增加值合计=国内生产总值=最终使用合计
需要特别指出的是,在总产出与总投入之间具有平衡关系,不仅一个经济总体的总投入等于其总产出,而且在单个部门层次上总投入也等于其总产出。
2. 直接消耗系数与完全消耗系数及其应用
通过对投入产出表进行投入产出分析,可以系统反映产业之间的关联。其基本方法是以第Ⅰ象限为依据,通过中间投入流量计算各产业间的直接消耗系数和完全消耗系数。
直接消耗系数又称为投入系数或技术系数,一般用 表示,其定义是:每生产单位j产品需要消耗i产品的数量。直接消耗系数的计算公式是:
对所有产业计算直接消耗系数,结果构成一个系数矩阵,通常用A表示。直接消耗系数只反映了产业间的直接联系,却不能反映产业间联系。需要在直接消耗系数基础上计算完全消耗系数,既反映直接联系,也反映间接联系。单个完全消耗系数用b表示,对所有产业计算完全消耗系数,所形成的矩阵用B表示,它是依据直接消耗矩阵计算得到的,其计算公式如下:
B=(I-A)-1-I
式中(I-A)-1称为列昂惕夫逆矩阵,也是用来分析产业联系的重要工具。
如果用X表示总产出向量,用Y表示最终使用向量,则中间使用矩阵为AX,根据投入产出表中的平衡关系可以得到:
AX+Y=X
从而有:
(I-A)-1Y=X
把上式写成差分形式,得到
(I-A)-1 ㄓY=ㄓX
可见列昂惕夫逆矩阵度量了最终使用与总产出之间联系的强度,它的含义是,如果每个产业的最终使用都增加一个单位,则各产业总产出将增加的单位数。