预约成功
(二)力法典型方程及其意义
根据原结构在荷载、温度变化、支座位移等因素作用下产生的已知位移与基本结构在各多余未知力以及与原结构相同的荷载、温度变化、支座位移等因素作用下产生的位移必须相同的条件,由叠加原理,可得n次超静定结构的力法典型方程为
(4—1)
式中 Xi 为多余未知力(i=1、2、…、,2);δij钆为基本结构仅由Xj=1 为多余未知力(j=1、2、…、n)产生的沿Xi 方向的位移、为基本结构的柔度系数;Δip、Δit、Δic分别为基本 结构仅由荷载、温度变化、支座位移产生的沿Xi 方向的位移,为力法典型方程的自由项;Δi为原超静定结构在荷载、温度变化、支座位移作用下的已知位移(如结构边界处的已知支座位移条件、杆件变形后的已知位移连续条件等)。
力法典型方程(4—1)也称为变形协调方程。其中第一个方程表示基本结构在n个多余未知力、荷载、温度变化、支座位移等共同作用下,在Xl作用点沿Xl作用方向产生的位移,等于原结构的已知相应位移Δ1;第二个方程表示基本结构在n个多余未知力、荷载、温度变化、支座位移共同作用下,在X2作用点沿X2作用方向产生的位移,等于原结构的已知相应位移Δ2。其余各式的意义可按此类推。
各多余未知力Xi的大小和方向必须受力法典型方程的约束,多余约束力与变形协调条件是一一对应的,故满足力法典型方程的各多余未知力的解是唯一真实的解。
同一超静定结构,可以选取不同的基本体系,其相应的力法典型方程也就表达了不同的变形协调条件。不管选取哪种基本体系,求得的最后内力总是相同的。
图4—2a所示体系为一次超静定结构,如取图4—2b所示的基本体系,则力法典型方程为δ11X1 +Δ1p=0;如取图4—2c所示的基本体系,则力法典型方程为δ11X1 +Δ1p= —X1l/EA。

图4-2
对于图4—2d所示的一次超静定结构,如取图4—2e、f所示的基本体系,则相应的力法典型方程分别为δ11X1 +Δ1p=0、δ11X1 +Δ1p= —X1/kN。
图4—3a所示一次超静定结构的支座B有已知的竖向位移a,如取图4—3b所示的基本体系,力法典型方程为δ11X1 = -a;如取图4—3c所示的基本体系,力法典型方程为δ11X1 +Δ1C=0。

图4-3