短信预约提醒成功
大体积混凝土裂缝产生的主要影响因素
大体积混凝土由于截面大,水泥用量大,水泥水化释放的水化热会产生较大的温度变化,由此形成的温度应力是导致产生裂缝的主要原因。这种裂缝分为两种:
① 大体积混凝土浇筑初期,水泥水化产生大量水化热,使大体积混凝土的温度很快上升。但由于大体积混凝土表面散热条件较好,热量可以向大气中散发,因而温度上升较少;而大体积混凝土内部由于散热条件较差,热量散发少,因而温度上升较多,内外形成温度梯度,形成内外约束。结果大体积混凝土内部产生压应力,面层产生拉应力,当该拉应力超过大体积混凝土的抗拉强度时,大体积混凝土表面就产生裂缝。
② 大体积混凝土浇筑后数日,水泥水化热基本上已释放,大体积混凝土从最高温逐渐降温,降温的结果引起大体积混凝土收缩,再加上由于大体积混凝土中多余水份蒸发、碳化等引起的体积收缩变形,受到地基和结构边界条件的约束(外约束),不能自由变形,导致产生温度应力(拉应力),当该温度应力超过大体积混凝土抗拉强度时,则从约束面开始向上开裂形成温度裂缝。如果该温度应力足够大,严重时可能产生贯穿裂缝。
大体积混凝土施工阶段产生的温度裂缝,是其内部矛盾发展的结果。一方面是大体积混凝土由于内外温差产生应力和应变,另一方面是结构的外约束和大体积混凝土各质点间的约束(内约束)阻止这种应变。一旦温度应力超过大体积混凝土能承受的抗拉强度,就会产生裂缝。上述大体积混凝土温度应力的大小取决于水泥、水化热、拌合浇筑温度、大气温度、收缩变形及当量温度等因素,同时它与大体积混凝土的降温散热条件和硅升降温速密切相关的,而大体积混凝土抗拉强度的提高与大体积混凝土本身材料性能有关,此外还与施工方案及配筋等因素有关。
水泥水化热
水泥在水化过程中要产生一定的热量,是大体积混凝土内部热量的主要来源。
由于大体积混凝土截面厚度大,水化热聚集在结构内部不易散失,所以会引起急骤升温。水泥水化热引起的绝热温升,与混凝土单位体积内的水泥用量和水泥品种有关,并随混凝土的龄期按指数关系增长,一般在10d左右达到最终绝热温升,但由于结构自然散热,实际上混凝土内部的最高温度,大多发生在混凝土浇筑后的3~5d。
大体积混凝土的导热性能
热量在大体积混凝土内传递的能力反映在其导热性能上。大体积混凝土的导热系数越大,热量传递率就越大,则其与外界热交换的效率也越高,从而使大体积混凝土内最高温升降低。同时也减小了大体积混凝土的内外温差。可以预计,导热性能越好,热峰值出现的时间也相应提前。中部最高温度的热峰值及热峰值出现的时间与板厚密切有关。显见,板越厚,中部点散热较少,热峰值也越高,中部受外界温降影响所需时间就越长,峰值出现的时间也要晚一些。
大体积混凝土的导热性能较差,浇筑初期,混凝土的弹性模量和强度都很低,对水化热急剧温升引起的变形约束不大,温度应力较小。随着混凝土龄期的增长,弹性模量和强度相应提高,对混凝土降温收缩变形的约束愈来愈强,即产生很大的温度应力,当大体积混凝土的抗拉强度不足以抵抗该温度应力时,便开始产生温度裂缝。
外界气温变化
大体积混凝土结构施工期间,外界气温的变化对大体积混凝土开裂有重大影响。大体积混凝土的内部温度是浇筑温度(既大体积混凝土的入模温度,它是大体积混凝土水化热温升的基础,可以预见,大体积混凝土的入模温度越高,它的热峰值也必然越高。工程实践中在高温季节浇筑常采用钢筋预冷,加冰拌和等措施来降低浇筑温度,控制大体积混凝土最高温升,原因在此)。水化热的绝热温升和结构散热降温等各种温度的叠加之和。
外界气温愈高,大体积混凝土的浇筑温度也愈高;若外界温度下降,会增加大体积混凝土的降温幅度,特别在外界气温骤降时,会增加外层大体积混凝土与内部大体积混凝土的温度梯度,这对大体积混凝土极为不利。
·2008年一级注册结构工程师考试成绩查询汇总
·2009年结构工程师考试时间:9月19、20日
·08年考试规范、标准: 二级结构工程师